Transient BOLD responses at block transitions.

نویسندگان

  • Michael D Fox
  • Abraham Z Snyder
  • Deanna M Barch
  • Debra A Gusnard
  • Marcus E Raichle
چکیده

Block-design fMRI responses include sustained components present for the duration of each task block as well as transient components at the beginning and end of each block. Almost all prior block-design fMRI studies have focused on the sustained response components while the transient responses at block transitions have been largely ignored. These transients, therefore, remain poorly characterized. We here present a systematic study of block-transition transient responses obtained using four widely divergent tasks. We characterize transient response topography and examine the extent to which these responses vary across different tasks and between block onset and offset. Our analysis reveals that certain regions show transient responses regardless of task or transition type. However, our analysis also shows that specific task state transitions give rise to transient responses with unique spatial profiles. Relevance of the current findings to studies of exogenous attention, task shifting, and the BOLD overshoot is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mixed block/event-related design

Neuroimaging studies began using block design and event-related design experiments. While providing many insights into brain functions, these fMRI design types ignore components of the BOLD signal that can teach us additional elements. The development of the mixed block/event-related fMRI design allowed for a fuller characterization of nonlinear and time-sensitive neuronal responses: for exampl...

متن کامل

Differential transient MEG and fMRI responses to visual stimulation onset rate

While recent analysis of functional magnetic resonance imaging (fMRI) data utilize a generalized nonlinear convolution model (e.g., dynamic causal modeling), most conventional analyses of local responses utilize a linear convolution model (e.g., the general linear model). These models assume a linear relationship between the blood oxygenated level dependent (BOLD) signal and the underlying neur...

متن کامل

BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones.

Blood oxygen level dependent-functional magnetic resonance imaging (BOLD-fMRI) and magnetoencephalographic (MEG) signals are both coupled to postsynaptic potentials, although their relationship is incompletely understood. Here, the wide range of BOLD-fMRI and MEG responses produced by auditory cortex was exploited to better understand the BOLD-fMRI/MEG relationship. Measurements of BOLD and MEG...

متن کامل

Identification of cerebral networks by classification of the shape of BOLD responses.

Changes in regional blood oxygen level dependent (BOLD) signals in response to brief visual stimuli can exhibit a variety of time-courses. To demonstrate the anatomical distribution of BOLD response shapes during a match to sample task, a formal analysis of their time-courses is presented. An event-related design was used to estimate regional BOLD responses evoked by a cue word, which instructe...

متن کامل

MRI of functional deactivation: temporal and spatial characteristics of oxygenation-sensitive responses in human visual cortex.

Magnetic resonance imaging (MRI) of neuronal "activation" relies on the elevation of blood flow and oxygenation and a related increase of the blood oxygenation level-dependent (BOLD) MRI signal. Because most cognitive paradigms involve both switches from a low degree of activity to a high degree of activity and vice versa, we have undertaken a baseline study of the temporal and spatial characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2005